Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
1.
researchsquare; 2021.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-203728.v1

ABSTRACT

Background: We aimed to analyse clinical characteristics and find potential factors predicting poor prognosis in patients with coronavirus disease 2019 (COVID-19). Methods: We analyzed the demographic and clinical data of COVID-19 patients and detected SARS-CoV-2 RNA in urine sediments collected from 53 COVID-19 patients enrolled in Renmin Hospital of Wuhan University from January 31, 2020 to February 18, 2020 with qRT-PCR analysis, and then classified those patients based on clinical conditions (severe or non-severe syndrome) and urinary SARS-CoV-2 RNA (URNA- or URNA+). Results: We found that COVID-19 patients with severe syndrome (severe patients) showed significantly higher positive rate (11 of 23, 47.8%) of urinary SARS-CoV-2 RNA than non-severe patients (4 of 30, 13.3%, p = 0.006). URNA+ patients or severe URNA+ subgroup exhibited higher prevalence of inflammation and immune discord, cardiovascular diseases, liver damage and renal disfunction, and higher risk of death than URNA- patients. To understand the potential mechanisms underlying the viral urine shedding, we performed renal histopathological analysis on postmortems of patients with COVID-19 and found that severe renal vascular endothelium lesion characterized by increase of the expression of thrombomodulin and von Willebrand factor, markers to assess the endothelium dysfunction. We proposed a theoretical and mathematic model to depict the potential factors determining the urine shedding of SARS-CoV-2. Conclusions: This study indicated that urinary SARS-CoV-2 RNA detected in urine specimens can be used to predict the progression and prognosis of COVID-19 severity. 


Subject(s)
Microcephaly , von Willebrand Diseases , Cardiovascular Diseases , Chemical and Drug Induced Liver Injury , Death , COVID-19 , Inflammation
2.
researchsquare; 2020.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-37036.v2

ABSTRACT

Background: The SARS-CoV-2 RNA was detected positive again after discharged from hospital in some COVID-19 patients, with or without clinical symptoms such as fever or dry cough. Methods 1008 severe COVID-19 patients, with SARS-CoV-2 RNA positive detected with the mixed specimen of nasopharyngeal swab and oropharyngeal swab by real-time fluorescence quantitative PCR (RT-qPCR), were selected to monitor SARS-CoV-2 RNA with the 12 types of specimens by RT-qPCR during hospitalization. All of 20 discharged cases with COVID-19 were selected to detect SARS-CoV-2 RNA in isolation period with 7 types of specimens by RT-qPCR before releasing the isolation period. Results Of the enrolled 1008 severe patients, the nasopharyngeal swab specimens showed the highest positive rate of SARS-CoV-2 RNA (71.06%), followed by alveolar lavage fluid (66.67%), oropharyngeal swab (30.77%), sputum (28.53%), urine (16.30%), blood (12.5%), stool (12.21%), anal swab (11.22%) and corneal secretion (2.99%), and SARS-CoV-2 RNA couldn’t be detected in other types of specimen in this study. Of the 20 discharged cases during the isolation period, the positive rate of SARS-CoV-2 RNA was 30% (6/20); 2 cases were positive in sputum at the eighth and ninth day after discharge, respectively. 1 case was positive in nasopharynx swab at the sixth day after discharge, 1 case was positive in anal swab at the eighth day after discharge, and 1 case was positive in 3 specimens ( nasopharynx swab , oropharynx swab and sputum) simultaneously at the fourth day after discharge; no positive SARS-CoV-2 RNA was detected in other specimens including stool, urine and blood at the discharged patients. Conclusions SARS-CoV-2 RNA should be detected in multiple specimens, such as nasopharynx swab, oropharynx swab, sputum, and if necessary, stool and anal swab specimens should be performed simultaneously at discharge when the patients were considered for clinical cure and before releasing the isolation period.


Subject(s)
COVID-19 , Fever
3.
Chinese Journal of Laboratory Medicine ; (12): E003-E003, 2020.
Article in Chinese | WPRIM (Western Pacific), WPRIM (Western Pacific) | ID: covidwho-11828

ABSTRACT

In December, the outbreak of a novel coronavirus (2019-nCoV) in Wuhan, China, has attracted extensive global attention. On January 20, 2020,the Chinese health authorities upgraded the coronavirus to a Class B infectious disease in the Law of the People's Republic of China on the Prevention and Treatment of Infectious Diseases, and considered it as Class A infectious diseases in disease control and prevention. On January 22, 2020, the 2019-nCoV nucleic acid detection test was listed as the diagnostic criteria in the "guidelines for diagnosis and treatment of pneumonia due to 2019-nCoV (Trial Version 2)" . Therefore, standardizing the operation process of the 2019-nCoV nucleic acid detection in clinical laboratories has become a top priority. It is of paramount importance to establish standard protocols for detection of the 2019-nCoV nucleic acids in clinical laboratories to improve the reliability of the results and ensure the biosafety of laboratory personnel.

4.
Chinese Journal of Laboratory Medicine ; (12): E016-E016, 2020.
Article in Chinese | WPRIM (Western Pacific), WPRIM (Western Pacific) | ID: covidwho-6052

ABSTRACT

Objective@#To investigate the positive rate for 2019-nCoV tests and co-infections in Wuhan district.@*Methods@#A total of 8 274 cases in Wuhan were enrolled in this cross-sectional study during January 20 to February 9, 2020, and were tested for 2019-nCoV using fluorescence quantitative PCR. Both respiratory tract samples (nasopharynx, oropharynx, sputum and alveolar lavage fluid) and non-respiratory tract samples (urine, feces, anal swabs, blood and conjunctival sac swabs) were collected. If both orf1ab and N genes are positive, they are classified as nucleic acid test positive group; if both orf1ab and N genes are negative, they are classified as negative group; if single gene target is positive, they are classified as suspicious group. Individuals were divided into male group and female group according to sex. At the same time, 316 patients were tested for 13 respiratory pathogens by multiplex PCR.@*Results@#Among the 8 274 subjects, 2 745 (33.2%) were 2019-nCoV infected; 5 277 (63.8%) subjects showed negative results in the 2019-nCoV nucleic acid test; and 252 cases (3.05%) was not definitive (inconclusive result). The age of cases with COVID-19 patients and inconclusive cases was significantly higher than that of cases without 2019-nCoV infection (40 vs 56, t=27.569, P<0.001; 52 vs 56, t=6.774, P<0.001). The positive rate of 13 respiratory pathogens multiple tests was significantly lower in 104 subjects who were positive for 2019-nCoV compared with those in subjects who were negative for 2019-nCoV test (5.77% vs 18.39%, χ2=24.105, P=0.003). Four types of respiratory tract samples and five types of non-respiratory tract samples were found to be positive for 2019-nCoV nucleic acid test.@*Conclusion@#The 2019-nCoV nucleic acid positive rate in male is higher than in female. Co-infections should be pay close attention in COVID-19 patients. 2019-nCoV nucleic acid can be detected in non-respiratory tract samples.

5.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.03.20030650

ABSTRACT

Background The outbreak of COVID-2019 is becoming a global public health emergency. Although its basic clinical features have been reported, the dynamic characteristics of immune system in COVID-2019 patients, especially those critical patients with refractory hypoxemia, are not yet well understood. We aim to describe the dynamic characteristics of immune system in 3 critical patients with refractory hypoxemia, and discuss the relationship between hypoxemia severity and immune cell levels, and the changes of gut microbes of COVID-2019 patient. Methods This is a retrospective study from 3 patients with 2019-nCoV infection admitted to Renmin Hospital of Wuhan University, a COVID-2019 designated hospital in Wuhan, from January 31 to February 6, 2020. All patients were diagnosed and classified based on the Diagnosis and Treatment of New Coronavirus Pneumonia (6th edition) published by the National Health Commission of China4. We recorded the epidemiological history, demographic features, clinical characteristics, symptoms and signs, treatment and clinical outcome in detail. Blood samples were collected and we determined the expression levels of immune cells (CD3+ T cells, CD4+ T cells, CD8+ T cells, CD19+ B cells, and CD16+56+ NK cells) in different time points. Nanopore Targeted Sequencing was used to determine the alterations of gut microbiota homeostasis. Results Apart from the clinical features described previously4, we found that four patients had decreased immune cells and refractory hypoxemia during the hospitalization, and the severity of hypoxemia was strongly correlated to the expression levels of immune cells. Additionally, we found that the proportion of probiotics was significantly reduced, such as Bifidobacterium, Lactobacillus, and Eubacterium, and the proportion of conditioned pathogenic bacteria was significantly increased, such as Corynebacterium of Actinobacteria and Ruthenibacterium of Firmicutes. Notably, all patients died. Conclusions We discussed the dynamic characteristics of host immune system and the imbalance of gut microbiota in 3 critical patients with COVID-2019. Hypoxemia severity was closely related with host immune cell levels, and the vicious circle between immune disorder and gut microbiota imbalance may be a high risk of fatal pneumonia. To the best of our knowledge, this is the first study which revealing that immunodepletion with refractory hypoxemia is a potential high risk subtype of COVID-2019 and the vicious circle between immune disorder and gut dysbiosis may be a high risk of fatal pneumonia.


Subject(s)
Pneumonia , Dysbiosis , Hypoxia , Immune System Diseases , COVID-19
6.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.03.04.20029538

ABSTRACT

The ongoing novel coronavirus pneumonia COVID-19 outbreak in Wuhan, China, has engendered numerous cases of infection and death. COVID-19 diagnosis relies upon nucleic acid detection; however, current recommended methods exhibit high false-negative rates, low sensitivity, and cannot identify other respiratory virus infections, thereby resulting patient misdiagnosis and impeding epidemic containment. Combining the advantages of target amplification and long-read, real-time nanopore sequencing, we developed nanopore target sequencing (NTS) to detect SARS-CoV-2 and other respiratory viruses simultaneously within 6-10 h. Parallel testing with approved qPCR kits of SARS-CoV-2 and NTS using 61 nucleic acid samples from suspected COVID-19 cases confirmed that NTS identified more infected patients as positive, and could also monitor for mutated nucleic acid sequence or other respiratory virus infection in the test sample. NTS is thus suitable for contemporary COVID-19 diagnosis; moreover, this platform can be further extended for diagnosing other viruses or pathogens.


Subject(s)
COVID-19
7.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.12.20022327

ABSTRACT

Background: 2019-Novel coronavirus (2019-nCoV) outbreaks create challenges for hospital laboratories because thousands of samples must be evaluated each day. Sample types, interpretation methods, and corresponding laboratory standards must be established. The possibility of other infections should be assessed to provide a basis for clinical classification, isolation, and treatment. Accordingly, in the present study, we evaluated the testing methods for 2019-nCoV and co-infections. Methods: We used a fluorescence-based quantitative PCR kit urgently distributed by the Chinese CDC to detect 8274 close contacts in the Wuhan region against two loci on the 2019-nCoV genome. We also analyzed 613 patients with fever who underwent multiple tests for 13 respiratory pathogens; 316 subjects were also tested for 2019-nCoV. Findings: Among the 8274 subjects, 2745 (33.2%) had 2019-nCoV infection; 5277 (63.8%) subjects showed negative results in the 2019-nCoV nucleic acid test (non-019-nCoV); and 252 cases (3.0%) because only one target was positive, the diagnosis was not definitive. Sixteen patients who originally had only one positive target were re-examined a few days later; 14 patients (87.5%) were finally defined as 2019-nCoV-positive, and 2 (12.5%) were finally defined as negative. The positive rates of nCoV-NP and nCovORF1ab were 34.7% and 34.7%, respectively. nCoV-NP-positive only and nCovORF1ab-positive cases accounted for 1.5% and 1.5%, respectively. In the 316 patients with multiple respiratory pathogens, 104 were positive for 2019-nCov and 6/104 had co-infection with coronavirus (3/104), influenza A virus (2/104), rhinovirus (2/104), and influenza A H3N2 (1/104); the remaining 212 patients had influenza A virus (11/202), influenza A H3N2 (11/202), rhinovirus (10/202), respiratory syncytial virus (7/202), influenza B virus (6/202), metapneumovirus (4/202), and coronavirus (2/202). Interpretation: Clinical testing methods for 2019-nCoV require improvement. Importantly, 5.8% of 2019-nCoV infected and 18.4% of non-2019-nCoV-infected patients had other pathogen infections. It is important to treat combined infections and perform rapid screening to avoid cross-contamination of patients. A test that quickly and simultaneously screens as many pathogens as possible is needed.


Subject(s)
COVID-19 , Coinfection , Respiratory Syncytial Virus Infections , Fever
8.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.02.11.20021956

ABSTRACT

Background: The emerging 2019 novel coronavirus (2019-nCoV) has pushed several countries into state of emergency all over the world. The possible transmission of 2019-nCoV by conjunctiva is controversial and has substantial public health implications. Methods: A retrospective cohort study was initiated to investigate the possible transmission of 2019-nCoV through aerosol contact with conjunctiva. We enrolled 67 cases of confirmed or suspected cases of novel coronavirus pneumonia (NCP) during 17-28 Jan 2020. Nasopharyngeal and conjunctival swabs were collected for real time RT-PCR analysis to detect 2019-nCoV. Results: 63 patients were identified as laboratory-confirmed NCP and the remaining four were suspected NCP. Conjunctival swab samples from one NCP patient yielded positive PCR results and two NCP patients yielded probable positive PCR results. None of the three patients had ocular symptoms. The only one NCP patient with conjunctivitis as the first symptom had negative conjunctival sac 2019-nCoV test. Conjunctival swab samples from the four suspected cases of NCIP were negative. Conclusion: 2019-nCoV can be detected in the conjunctival sac of patients with NCP. Through clinical analysis, viral transmission via the conjunctival route was not supported by the data. Good clinical protection can effectively cut off the transmission path.


Subject(s)
Coronavirus Infections , Conjunctivitis
SELECTION OF CITATIONS
SEARCH DETAIL